Brain Mapping by Integrated Neurotechnologies for Disease Studies

Studying the neural networks controlling higher brain functions in the marmoset, to gain new insights into information processing and diseases of the human brain.

Partner Projects

Latest Picks

News

2021.09.17
NEW

Functional and molecular characterization of a non-human primate model of autism spectrum disorder shows similarity with the human disease

In the cortex of a marmoset model of autism exposed to valproic acid in utero, genes associated with neurons and oligodendrocytes were down-regulated, and genes associated with microglia and astrocytes were up-regulated, as in human autism. However, the current major rodent models could only reproduce human autism in at most two of the four cell types of the brain. This confirms the prediction that primate autism models reproduce human autism better than rodent models by an objective method of transcriptome comparison.

2021.09.03
NEW

Current Status of and Perspectives on the Application of Marmosets in Neurobiology

The common marmoset (Callithrix jacchus), a small New World primate, is receiving substantial attention in the neuroscience and biomedical science fields because its anatomical features, functional and behavioral characteristics, and reproductive features and its amenability to available genetic modification technologies make it an attractive experimental subject. This review outlines the progress of marmoset neuroscience research and summarizes both the current status (opportunities and limitations) of and the future perspectives on the application of marmosets in neuroscience and disease modeling.

2021.08.31
NEW

A third-generation mouse model of Alzheimer's disease shows early and increased cored plaque pathology composed of wild-type human amyloid β peptide

The researchers generated a new Alzheimer’s disease (AD) mouse model that more faithfully recapitulate pathology of AD patients compared to the previous ones. This new third-generation mouse model will help accelerate the elucidation of the disease mechanisms and development of disease-modifying therapies to treat AD.

2021.07.26

Altered Dynamic Information Flow through the Cortico-Basal Ganglia Pathways Mediates Parkinson’s Disease Symptoms

By recording neuronal activity from a Japanese monkey model of Parkinson’s disease, the researchers have elucidated the neural mechanisms underlying parkinsonian symptoms. Disturbance of information flow through the “direct pathway” in the basal ganglia is responsible for parkinsonian symptoms, and its restoration has beneficial effects on the symptoms.

2021.05.18

Global and Parallel Cortical Processing Based on Auditory Gamma Oscillatory Responses in Humans

The researchers demonstrated that auditory gamma oscillation is globally distributed among the temporal, parietal, and frontal cortices by using intracranial recordings implanted for the diagnostic purpose of the intractable epilepsy. Elucidation of the mechanism of gamma oscillation, which is decreased in psychiatric disorders such as schizophrenia, is expected to be useful for the development of future diagnosis and treatment.

2021.04.27

Cellular-resolution gene expression profiling in the neonatal marmoset brain reveals dynamic species- and region-specific differences

Comprehensive expression analysis of genes associated with developmental disorders and psychiatric disorders in the common marmoset brain revealed that these genes are expressed in a specific brain region. Also, by comparing the expression patterns of the mouse and human brain, it was clarified that there are many common expression patterns between marmosets and humans.

2021.04.20

Decreased DNA methylation at promoters and gene-specific neuronal hypermethylation in the prefrontal cortex of patients with bipolar disorder

The researchers performed comprehensive DNA methylation analyses of neurons from patients with bipolar disorder, and found that many genes were hypomethylated in patients, while genes important for neuronal function were hypermethylated. Differentially methylated regions in neurons were significantly enriched in genomic regions suggested by a genome-wide association study of bipolar disorder, indicating an association with genetic factors.

Events

Past events

Related Projects

  • International Brain Initiative
  • Marmoset Gene Atlas
  • Brain/MINDS Data Portal

Supported by

Japan Agency for Medical Research and Development