Brain Mapping by Integrated Neurotechnologies for Disease Studies

Studying the neural networks controlling higher brain functions in the marmoset, to gain new insights into information processing and diseases of the human brain.

Partner Projects

Latest Picks



Altered Dynamic Information Flow through the Cortico-Basal Ganglia Pathways Mediates Parkinson’s Disease Symptoms

By recording neuronal activity from a Japanese monkey model of Parkinson’s disease, the researchers have elucidated the neural mechanisms underlying parkinsonian symptoms. Disturbance of information flow through the “direct pathway” in the basal ganglia is responsible for parkinsonian symptoms, and its restoration has beneficial effects on the symptoms.


Global and Parallel Cortical Processing Based on Auditory Gamma Oscillatory Responses in Humans

The researchers demonstrated that auditory gamma oscillation is globally distributed among the temporal, parietal, and frontal cortices by using intracranial recordings implanted for the diagnostic purpose of the intractable epilepsy. Elucidation of the mechanism of gamma oscillation, which is decreased in psychiatric disorders such as schizophrenia, is expected to be useful for the development of future diagnosis and treatment.


Cellular-resolution gene expression profiling in the neonatal marmoset brain reveals dynamic species- and region-specific differences

Comprehensive expression analysis of genes associated with developmental disorders and psychiatric disorders in the common marmoset brain revealed that these genes are expressed in a specific brain region. Also, by comparing the expression patterns of the mouse and human brain, it was clarified that there are many common expression patterns between marmosets and humans.


Decreased DNA methylation at promoters and gene-specific neuronal hypermethylation in the prefrontal cortex of patients with bipolar disorder

The researchers performed comprehensive DNA methylation analyses of neurons from patients with bipolar disorder, and found that many genes were hypomethylated in patients, while genes important for neuronal function were hypermethylated. Differentially methylated regions in neurons were significantly enriched in genomic regions suggested by a genome-wide association study of bipolar disorder, indicating an association with genetic factors.


Cosmic dance in the awake brain – a cortical small-world network across multi-modal areas–

The researchers developed a fast and wide field-of-view two-photon microscopy with practically no optical aberrations. Combining high-performance large lenses and devices and a fast laser scanning mirror enables the recording of over 16,000 neurons in awake mice. Functional network analysis with single-cell resolution reveals the small-world behavior of the cortex.


Past events

Related Projects

  • International Brain Initiative
  • Marmoset Gene Atlas
  • Brain/MINDS Data Portal

Supported by

Japan Agency for Medical Research and Development